B T S Royaume du Maxo

Centre National de l'Evaluation, des Examens et de l'Orientation

EXAMEN NATIONAL D'OBTENTION DU BREVET DE TECHNICIEN SUPERIEUR

SESSION: MAI 2014

Filière : MAINTENANCE INDUSTRIELLE

Epreuve : Génie Electrique

M

Avertissements

- ✓ La lecture de l'ensemble du sujet est vivement conseillée avant la rédaction des réponses.
- ✓ Le sujet comporte 3 parties indépendantes, et l'ordre de traitement des différentes parties n'est pas prioritaire.
- ✓ L'usage de la calculatrice est autorisé. Cependant, les **échanges** de machines entre candidats, est **strictement interdit.**
- ✓ Veuillez numéroter toutes les questions traitées.
- ✓ Veiller également à la clarté de la présentation. Tous ces éléments interviendront largement dans la note.
- ✓ Aucun document n'est autorisé.

Examen National d'obtention du Brevet de Technicien Supérieur Session Mai 2014

Р	age
2	/22
	´ 33

Filière:	MAINTENANCE INDUSTRIELLE	Durée:	3 Heures
Épreuve:	Génie Electrique	Coefficient:	15

Ce sujet comporte 5 dossiers :

- ♣ Présentation. P1 à P2
- ♣ Questionnaire. Q1 à Q4
- ♣ Dossier Technique. DT1 à DT2
- ♣ Notices Techniques. NT1 à NT13
- ♣ Documents Réponses DR1 à DR9

Important

L'épreuve se compose de trois études indépendantes. A l'intérieur de chaque partie, certaines sousparties sont elles-mêmes aussi indépendantes. Les étudiants sont donc inviter à lire attentivement l'énoncé avant de commencer à composer et d'autre part, à bien répartir leur temps de composition entre les différentes parties.

Parties	Temps recommandé
Lecture du Sujet	20 min
Distribution électrique	60 min
Schémas de liaison à la terre	40 min
Appareillages électrique	60 min

Les étudiants sont priés de rédiger les réponses aux questions relatives aux différentes parties de l'épreuve sur les Documents Réponses DR1 à DR9. Il est rappelé aux étudiants qu'ils doivent présenter les calculs clairement, dégager et encadrer les résultats relatifs à chaque question référencer dans le sujet. Tout résultat incorrectement exprimé ne sera pas pris en compte. En outre les correcteurs recommandent d'écrire lisiblement.

Barème de Notation

Distribution électrique	70 Points	
1 ^{éré} Partie	14 Points	
2 ^{émé} Partie	18 Points	
3 ^{émé} Partie	20 Points	
4 ^{émé} Partie	18 Points	20
Schéma de liaison à terre	60 Points	200 Points
1 ^{éré} Partie	20 Points	oir
2 ^{èmè} Partie	40 Points	ıts
Appareillage électrique	70 Points	
1 ^{éré} Partie	30 Points	
2 ^{émé} Partie	20 Points	
3 ^{émé} Partie	20 Points	

Session Mai 2014 Épreuve: Génie Electrique

Présentation de « LaitMar »

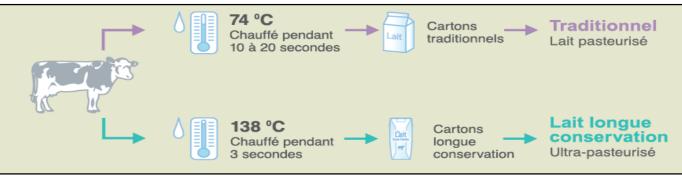
(Voir DT1)

Le lait, aliment riche par excellence en calcium et vitamines, a cette faculté incroyable de se transformer par des procèdes industrielle en une multitude de produits laitiers. Produits laitiers variées et riches en goût tel que le lait pasteurisé ou UHT (Ultra Haute Température), fromage, yaourt, beurre, leben, crème et desserts lactés. Ce sont également des aliments importants pour notre santé. Ils sont importants à toutes les étapes de la vie. Pendant l'enfance, pour favoriser la croissance, à l'âge adulte pour prendre soin de son capital osseux, à un âge plus avancé pour protéger les os devenus plus fragiles. Certains des produits laitiers, comme le yaourt, ont

également une action positive sur la flore intestinale et favorisent une meilleure digestion.

La filière laitière est un atout important pour l'économie Marocaine. Elle représente une part importante du chiffre d'affaires du secteur agro-alimentaire. L'entreprise étudiée dans le cadre de notre sujet est un des leaders de cette filière. LaitMar entreprise située dans la région de Kénitra emplois un effectif de 230 employés dont une vingtaine de cadres. Avec un chiffre d'affaire de 350 Mdh, elle constitue un acteur principal de la région

Procéder de fabrication


(Voir DT1)

Avant d'arriver dans nos supermarchés et épiciers, puis dans nos réfrigérateurs, le lait élément fragile, suit un processus précis qui a pour but de le protéger, le transformer et le conditionner.

Stérilisation, pasteurisation, écrémage, affinage, ensemencement, tous ces termes correspondent à des étapes de la fabrication des produits laitiers. Ces produits sont la déclinaison d'un seul et même ingrédient, le lait. La capacité de celui-ci à se transformer, à prendre en masse ou en goût, en fait un ingrédient à part. Yaourts, fromages, crèmes, beurres et toute une variété de desserts lactés suivent parfois un long processus de transformation dans leur fabrication, qui leur donne toute leur particularité et leur saveur. Certains de ces processus existent d'ailleurs depuis des milliers d'années, notamment pour le beurre dont le principe de fabrication n'a pas changé. La technologie a toutefois évolué et l'ingéniosité de l'industrie alimentaire permet aujourd'hui d'avoir des produits laitiers toujours plus gourmands et riches en goûts.

Examen national d'obtention du Brevet de Technicien Supérieur -Session Mai 2014 **P2** Filière: MAINTENANCE INDUSTRIELLE Épreuve: Génie Electrique Tour de La fabrication des séchage produits laitiers 5. Pour obtenir du lait en poudre, le lait pasteurisé est pulvérisé dans une atmosphère brûlante ; l'eau s'évapore 6. Pour obtenir du lait frais pasteurisé, le lait est chauffé à 72 °C pendant 15 secondes, puis refroidi 7. Pour obtenir du lait UHT, le lait est chauffé à 140 °C pendant **Pasteurisateur** 4 secondes puis refroidi Refroidissement Analyse: L'écrémeuse-Upérisateur la qualité du centrifugeuse lait est permet d'obtenir d'une part, la vérifiée crème, et d'autre part, du lait écrémé 3. Pour obtenir du lait entier et demi-8. Pour obtenir du beurre, Pasteurisateur écrémé, on mélange une quantité précise la crème est agitée, de crème avec du lait écrémé Cuve de maturation 4. Pour obtenir de la crème fraîche, la crème est pasteurisée, puis mélangée à des ferments pour épaissir 74 °C Cartons Traditionnel Chauffé pendant traditionnels Lait pasteurisé 10 à 20 secondes

Session Mai 2014 Filière: MAINTENANCE INDUSTRIELLE Épreuve: Génie Electrique

Questionnaire

Le service maintenance compte 13 personnes et ses activités se répartissent en 50% de préventif, et 40% de Correctif et 10% d'amélioration et travaux neufs sur des équipements très spécifiques utilisant des technologies de pointe.

Nous nous intéresserons plus particulièrement à sa grosse production qui concerne les Brique de lait UHT et qui représente 25% de la production

Un audite réalisé dans l'entreprise, fait apparaître plusieurs problèmes qui pourront être facilement améliorés par le service maintenance.

Alimentation (Voir DT2)

L'alimentation électrique s'effectue en souterrain, par une ligne 20 kV triphasé alimentant un poste de transformation comportant :

- Un transformateur de 1000 KVA, tension 20 kV: 410V couplage Dyn
- Un panneau de comptage côté basse tension.
- Deux cellules de sectionnement, et une cellule de protection HT

Tableau TDG

Il comporte:

- Un disjoncteur générale D_G.
- Un jeu de barres.
- Cinq départs protégés par disjoncteurs, vers les cinq Tableaux de Répartition alimentant les cinq lignes de production.

Tableau	Disjoncteur	Ligne	Puissance (KVA)
TR1	D1	UHT	A déterminer
TR2	D2	PASTORISATION	180
TR3	D3	YAGOURT	100
TR4	D4	FROMAGE	120
TR5	D5	LEBEN et BEURRE	160

Tableau de répartition TR1

Tableau TR1: Il alimente la ligne UHT (câble A) et comporte quatre départs.

Disjoncteur	Départ	P (KW)	Cos(φ)
D 11	Ecrémage	60	0,89
D 12	Upérisation	80	0,92
D 13	Conditionnement	40	0,95
D 14	Palettisation	20	0,85

Examen national d'obtention du Brevet de Technicien Supérieur - Session Mai 2014
Filière: MAINTENANCE INDUSTRIELLE Épreuve: Génie Electrique

A. Distribution Electrique

70 Points

Q2

1^{ére} Partie : Alimentation HTA de LaitMar

(Voir DT2)

14 Points

- 1. Citer les trois types d'alimentation de poste que vous connaissez.
- 2. Quel type d'alimentation est utilisé dans le cas LaitMar ?
- 3. Quel est le couplage primaire et secondaire utilisé pour le transformateur ?
- 4. Calculer le courant nominal au primaire du transformateur.
- 5. Calculer le courant nominal au secondaire du transformateur.
- 6. Quels sont les principaux critères de choix d'un transformateur ?

2^{éme} Partie : Bilan de Puissance

(Voir DT2 et tableau de répartition des puissance TR1)

18 Points

- 7. Calculer la puissance active consommée par la ligne UHT
- 8. Calculer la puissance réactive consommée par la ligne UHT
- 9. En déduire la puissance apparente S (KVA) demandée par le départ TR1
- 10. En déduire le courant transporté dans le câble A alimentant la ligne UHT
- 11. Déduire le facteur de puissance de cette partie de l'usine
- 12. Quel est la solution qu'on peut utiliser pour améliorer le facteur de puissance de cette ligne

3^{éme} Partie : Etude de la canalisation électrique.

20 Points

La ligne UHT, dont le facteur de puissance a été améliorer à 1, est alimentée par un câble multipolaire de type U 1000 R02V de longueur 80 m, âme en cuivre, l'isolation en polyéthylène réticulé (PR), mode de pose sur chemin de câbles perforé avec deux autres départs en simple couche à la température ambiante 40°C, le courant d'emploi I_B=320A.

13. Que signifier l'appellation U 1000 R02V

(Voir NT1)

- 14. En utilisant NT2 et NT3 Choisir la section du câble alimentant la ligne UHT
- 15. Déterminer la chute de tension en ligne

(Voir NT4)

16. Vérifier si le câble choisit permet d'avoir une chute de tension inférieur à 1,5% et que faire sinon ?

4^{eme} Partie: Choix de disjoncteur.

18 Points

Sachant que le câble alimentant la ligne UHT (câble A) à une longueur de 80m et une section de 240mm² et que la puissance de court circuit du réseau amont et Pcc=500MVA.

17. Remplir le tableau suivant en utilisant la méthode proposée sur la notice technique NT 5.

ELEMENTS	R (m Ω)	X (m Ω)	R_T (m Ω)	X_T (m Ω)	I _{cc} (κA)
Réseau amont (Pcc=500MVA)					
Transformateur					
Câble T	0.28	0.4			
Disjoncteur DG		0.15			
Jeu de barre (S=400mm² L=4m)		0.6			
Disjoncteur D1		0.15			
Câble A					

- 18. Comment devrait être choisi le PdC du DG et du D1?
- 19. Choisir à partir des notices techniques NT6 et NT7 les deux disjoncteurs DG et D1.

B. Schéma de liaison à la terre

60 Points

1^{ere} Partie : Régime du Neutre

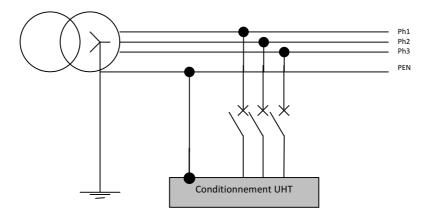
(Voir DT2)

Session Mai 2014

Épreuve: Génie Electrique

20 Points

- 20. Quelle est la fonction des schémas de liaison à la terre (appeler aussi régime du neutre)?
- 21. De quelle manière est relié le neutre à la terre ?
- 22. De quelle manière sont reliées les masses ?
- 23. Identifier le régime du neutre de l'usine « LaitMar ».
- 24. Indiquer les appareillages indispensables dans ce régime
- 25. Etablir un tableau comparatif entre le régime TT, TN et IT (avantages, inconvénients, techniques d'exploitation.)


2^{émé} Partie : Etude du schéma de liaison à la terre

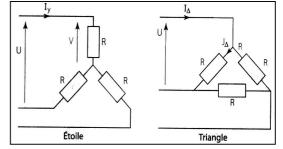
40 Points

Dans l'unité production du lait UHT. Le disjoncteur D13 alimente une machine de conditionnement situé à 80 m de la dérivation par un câble dont la section des phases est de 35mm^2 et une section du PE de 25mm^2 . Tension limite de sécurité pour cette partie de l'usine $U_L = 25 \text{v}$.

On Rappel : $R = \rho L / S$

- L : longueur de Conducteur en (m)
- S: Section du Conducteur en (mm²)
- ρ : résistivité du conducteur :
 - $\rho=22,5 \cdot 10^{-3} \Omega \cdot \text{mm}^2/\text{m}$ pour le cuivre
 - $\rho=36.10^{-3} \Omega.mm^2/m pour l'aluminium$
- 26. Dessiner le parcourt du courant de défaut lorsque la Phase 1 entre en contacte direct avec la masse.

- 27. Donner le schéma équivalent du défaut.
- 28. Donner l'expression puis calculer le courant de Défaut.
- 29. Calculer l'expression de la tension de contact.
- 30. Partant de l'expression $I_d > I_{mag}$ et $m=S_{PH}/S_{PE}$, Donner l'expression analytique de la longueur pour la quelle le régime TN assure la protection des personnes.
- 31. Calculer cette longueur pour un disjoncteur dont le calibre I_n=125 A avec (I_{mag}=8 I_n)
- 32. Que devient cette longueur si le câble utilisé est en aluminium.
- 33. La protection est-elle assure avec un câble en aluminium pour le cas de notre installation ?


C. 3^{émé} Etude : Appareillage Electrique

70 Points

1^{éré} Partie : Étude des éléments du circuit de puissance « Upérisateur »

30 Points

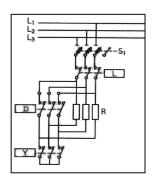
Le chauffage du lait dans l'upérisateur est assuré par trois résistances électriques identiques, deux régimes de chauffe sont possibles par changement du couplage des résistances.

- 34. Définir l'équation de la puissance dissipée en triangle P_{Δ} en fonction de U et R.
- 35. Déduire la valeur de la résistance R pour obtenir une puissance maxi de 38 kW.
- 36. Calculer les intensités des courants J_{Δ} et I_{Δ}
- 37. Définir l'expression de la puissance dissipée P_Y en étoile en fonction de U et R.
- 38. Exprimer la relation qui existe entre P_Y et P_{Δ} .
- 39. Calculer P_Y et l'intensité du courant I_Y.

2^{émé} Partie : Choix de l'appareillage électrique

20 Points

Compte tenu du schéma de puissance suivant


- 40. Préciser les critères de choix des contacteurs.
- 41. Choisir les contacteurs KM_Δ, KM_Y et KM_L.

(Voir NT8)

En fonction des intensités de courant calculées précédemment et de la nature du récepteur.

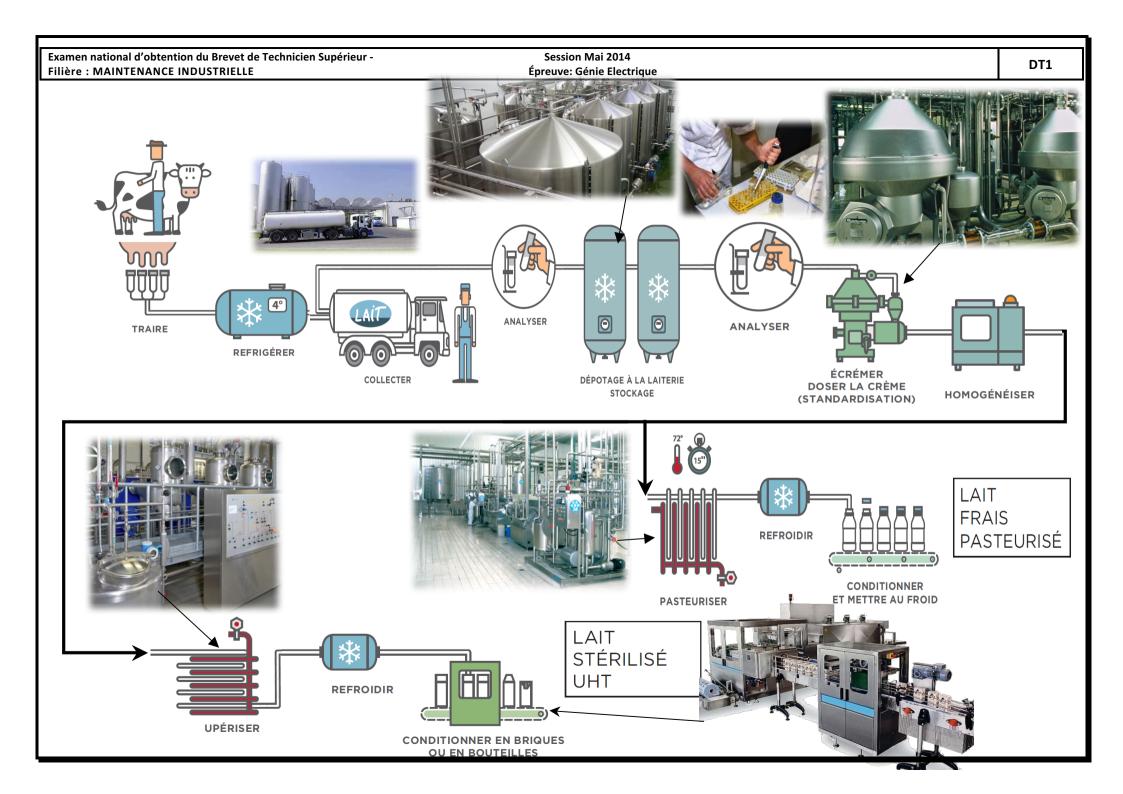
43. Donner la référence complète d'après les documents constructeurs (Voir NT10)

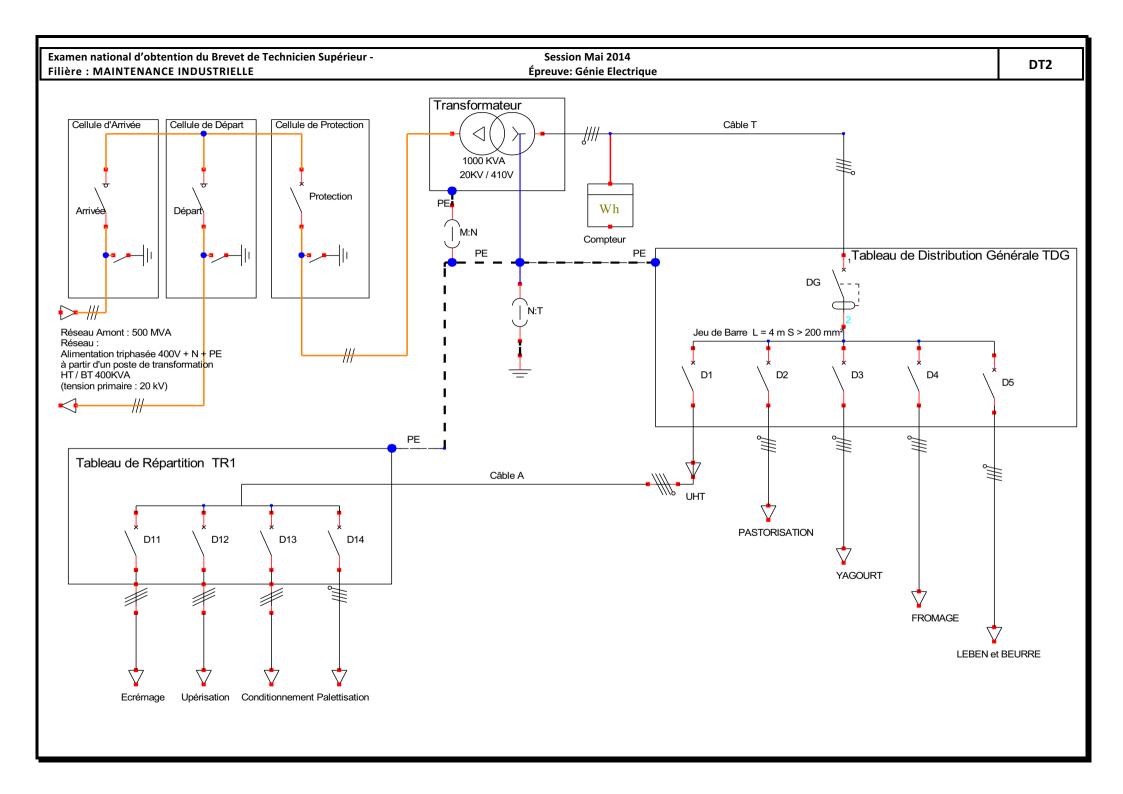
3^{émé} Partie : Rénovation

20 Points

Suite au vieillissement du démarreur de l'écrémeuse (démarrage étoile triangle), le service maintenance envisage la rénovation de la commande du moteur du rotation de l'écrémeuse. La rénovation mettra en œuvre un démarreur progressif

Le moteur du convoyeur : LEROY SOMER LS160MP 11kw 400v/690v Cos ϕ = 0,85 1450 tr/min (Voir NT 9)


- 44. Quel est le bon couplage des enroulements pour ce moteur ?
- 45. Pour quelles raisons évide-t-on l'usage du démarrage direct ?
- 46. Quels sont les avantages & les inconvénients du démarrage étoile triangle ?
- 47. Calculer le courant nominal du moteur
- 48. Que signifie la désignation « IP 55 » donnée par le constructeur. (Voir NT8)


Pour commander et protéger le moteur, trois solutions sont envisagées

Compléter le choix des matériels pour les trois solutions en indiquant : les références des composants choisis (voir NT10-11-12)

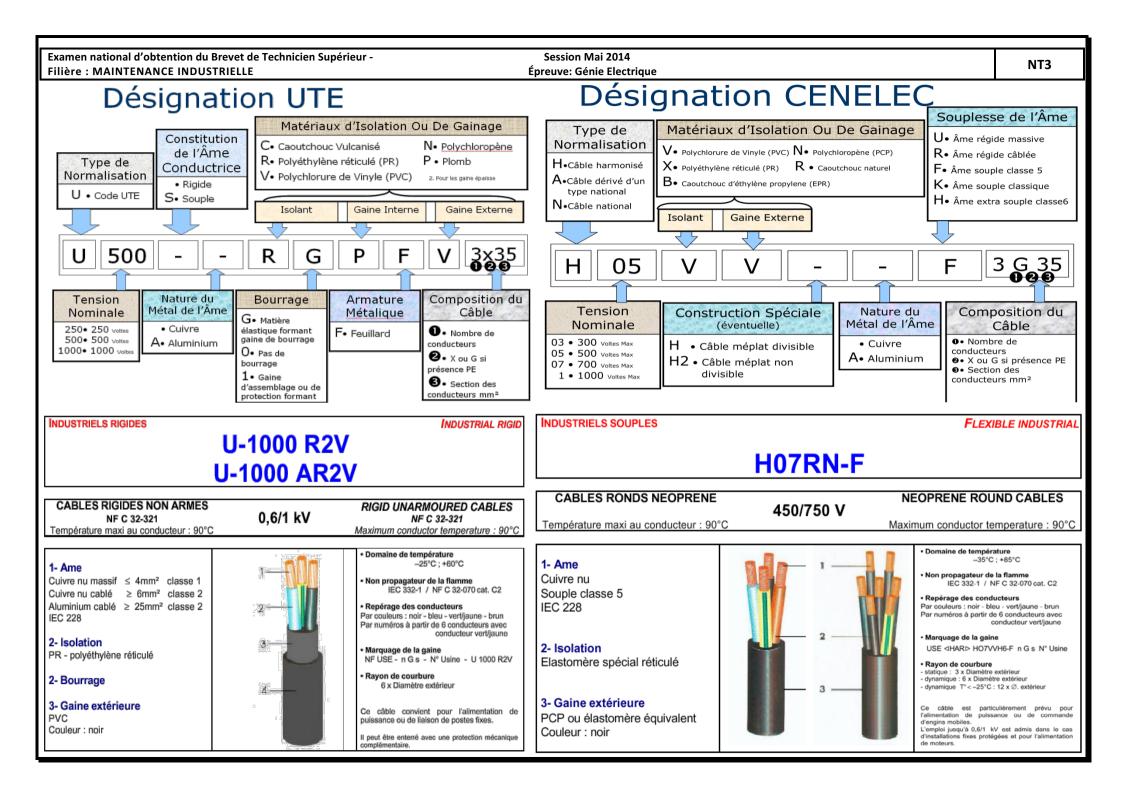
- 49. Sectionneur port fusible, contacteur, relais thermique, démarreur électronique
- 50. Disjoncteur moteur magnéto-thermique, contacteur, démarreur électronique
- 51. Contacteur disjoncteur intégré, démarreur électronique.

Q4

Session Mai 2014 Épreuve: Génie Electrique

NT1

Notice Technique NT 1


Disjoncteur Compact C801 à CM2000

Disjoncteur Compact				C801			C1001			C1251		CM125	50	CM1600		CM200	0	
Nombre de pôles				3,4			3,4			3,4		3,4		3,4		3,4		
Caractéristiques Electriques selon CEI 94	7-2 et RN 6	60947-2		-			1									ı		
Courant assigné (A)	In	40°C		800			1000			1250		1250		1600		2000		
Tension assignée d'isolement (V)	Ui			750			750					750		750		750		
Tension assignée de tenue aux chocs (kV)	Uimp		1		8					8		8		8		8		
Tension assignée d'emploi	Ue	CA 50/60 Hz		690			690			690		690		690		690		
		CC																
				N	Н	L	N	Н	L	N	Н	N	Н	N	Н	N	Н	
Pouvoir de coupure ultime (kA eff)	Icu	CA	220/240V	85	100	150	85	100	150	85	100	85	125	85	125	85	125	
,		50/60 Hz	380/415V	50	70	150	50	70	150	50	70	70	85	70	85	70	85	
			440V	42	65	150	42	65	150	42	65	65	85	65	85	65	85	
			500V	40	50	100	40	50	100	40	50	50	50	50	60	50	50	
			690V	25	40	60	25	40	60	25	40	50	50	50	60	50	50	
		CC	125V	1						50 (1P)	•							
			250V	1						50 (2P)								
			600V							50 (3P)								
			750V			1				25 (3P)		1						
Pouvoir de Coupure de Service	Ics	(% Icu)		50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	
Catégorie d'emploi				В	В	A	В	В	A	В	В	В	В	В	В	В	В	
Aptitude au sectionnement				•			•		•	•								
Endurance (cycle F - O)		mécanique		10000			10000			10000		10000	10000			10000		
		électrique	440V - In/2	3000			3000 3000											
			440V - In	1500	1500			1500 1500										
			690V - In/2										2000		2000		2000	
			690V - In								2000		2000	2000		2000		
Caractéristiques Electriques selon Nema	AB1																	
Pouvoir de coupure (kA)			240V	85	100	150	85	100	150	85	100	85	125	85	125	85	125	
			480V	42	65	100	42	65	100	42	65	65	85	65	85	65	85	
			600V	30	42	65	30	42	65	30	42	50	50	50	50	50	50	
Protection		•																
Protection contre les surintensités (A)		Déclencheur int		•			•			•	•							
	Ir	Courant de régla	age	320800	1		40010	000		8001250								
Déclencheur électronique intégré ST-CM1/2	2/3											•		•		•		
Protection différentielle		Dispositif additi																
		Relais Vigirex +	⊦ MX	•			•			•		•		•		•		
Installation et raccordement																		
Fixe prises avant				•		_	•			•		•	_	•		•		
Fixe prises arrière				•			•			•								
Décrochage sur socle				•			•			•								
Décrochage sur châssis																	-	
Auxiliaires de signalisation et mesure			•	•			•									•		
Contacts auxiliaires				Τ.			т.			Τ.		Τ.		T.		Τ.		
Fonctions associées aux déclencheurs électro	niques			†			<u> </u>			+:		+:		+:		+:	-	
Indicateur de présence de tension	mques			+ -			+•			+ -		+ -		+ -		+ *		
Bloc transformateur de courant				1			+			+		+		+		1		
				+			+			+		_		+		+		
Bloc ampèremètre				+			1			+		-		+		+		
Bloc surveillance d'isolement				1														

Notice Technique NT 2

Disjoncteur Compact NS80 à NS 630

Disjoncteur Compact				NS80	NS100			NS125E	NS160			NS250			NS400			NS630		
				_	2(#) 2.4				2(4) 2 4	2(#) 2.4					2.1			24		
Nb de pôles	2 4 DN 6	00.45.2		3	2(*),3,4			3,4	2(*),3,4			2(*),3,	4		3,4			3,4		
Caractéristiques Electriques selon CEI 947-		0947-2 40°C		00	100			100	160			250			400			(20		
Courant assigné (A) Tension assignée d'isolement (V)	In Ui	40°C		80 750	100 750			125 750	160 750			750			750			630 750		
Tension assignée de tenue aux chocs (kV)	Uimp			8	8			8	8			8			8			8		
		CA 50/60 Hz										690								
Tension assignée d'emploi	Ue	CA 50/60 HZ	-	690	690 500			500	690 500			500			690 500			690 500		
		CC		Н	N	Н	L		N N	Н	L	N	Н	L	N	Н	L	N	Н	T.
Pouvoir de coupure de service	Icu	CA	220/240V	100	85	100	150	25	85	100	150	85	100	150	85	100	150	85	100	150
1 ouvoir de coupare de service	icu	50/60 Hz	380/415V	70	25	70	150	16	45	70	150	45	70	150	45	70	150	45	70	150
			400V	50	25	65	130	10	42	65	130	42	65	130	42	65	130	42	65	130
			500V	25	18	50	70	6	30	50	70	30	50	70	30	50	70	30	50	70
			525V	25	18	35	50		22	35	50	22	35	50	22	35	50	22	35	50
			660/690V	6	8	10	20		8	10	20	8	10	20	10	20	35	10	20	35
		CC	250V		50	85	100		50	85	100	50	85	100		85			85	
			500V		50	85	100		50	85	100	50	85	100		85			85	
Pouvoir de Coupure de Service	Ics	(% Icu)		100%	100%	100%	100%	50%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Catégorie d'emploi	1		1	A	A	A	A	A	A	A	A	A	A	A	A	A	Α	A	A	A
Aptitude au sectionnement	1	(:	1	20000	50000	•	•	10000	40000	•	•	20000	•	•	15000	•	•	15000	•	•
Endurance (cycle F - O)	1	mécanique électrique	440V	10000	50000			6000	40000			20000			12000			8000		
		ciccirique	440V	7000	30000			6000	20000			10000			6000			4000		
Caractéristiques Electriques selon Nema Al	R1		1.01	7000	30000			0000	20000			10000			0000			1000		
Pouvoir de coupure (kA)	Ī		240V	100	85	100	200	5	85	100	200	85	100	200	85	100	200	85	100	200
,			480V	65	25	65	130	5	35	65	130	35	65	130	35	65	130	35	65	130
			600V	10	10	35	50		20	35	50	20	35	50	20	35	50	20	35	50
Protection																				
Protection contre les surintensités (A)		Déclencheur intercl	hangeable		•				•	·		•		•		•				
	Ir	Courant de réglage		1,580	12,5100			12,5125	12,5160		12,5250		160400		250	530				
Protection différentielle		Dispositif additions	nel Vigi		•			•	•			•			•			•		
		Relais Vigirex			•			•	•			•			•			•		
Installation et raccordement																				
Fixe prises avant				•	•			•	•			•			•			•		
Fixe prises arrière					•			•	•			•			•			•		
Décrochage sur socle					•				•			•			•			•		
Décrochage sur châssis					•				•			•			•			•		
Auxiliaires de signalisation et mesure																				
Contacts auxiliaires				•	•			•	•			•			•			•		
Fonctions associées aux déclencheurs			1		•				•			•			•			•		
électroniques	1		+	-	1				+									1		
Indicateur de présence de tension Bloc transformateur de courant	1		+	-	•				•			•			•			•		
	1		+	1	•			1	•			•			•			•		
Bloc ampèremètre	1		+	1	•			1	•			•			•			•		
Bloc surveillance d'isolement Auxiliaires de commande					•			<u> </u>				•			•			· ·		
	_	ı		1				1 .	T .									т.		
Déclencheurs auxiliaires	1		+	•	1			•	•			•			•			· ·		
télécommande	1		+	1	1			 	•			•			-					
Commande rotatives (directe, prolongée) Inverseur de source manuel/automatique	1		+	•	 			•	•			•			•			•		
Accessoires d'installation et de raccordeme	unt .	l .						l	<u> </u>			•			<u>. </u>			<u> </u>		
Bornes	1			intégrées	Τ.			Ι.	Τ.						Γ.			т.		
Plages et épanouisseurs			+	integrees	•			•	+:			:			•			•		
			+		 			•	+:			•			•			•		
Cache - hornes et sénarateurs de phaces	1	-	+	+	· ·			•	+:			:			· ·			+		
Cache - bornes et séparateurs de phases					. •			1 -	. •			•			•			•		
Cadre de face avant																				
Cadre de face avant Dimensions et masses		2-3 nôles fixe PAV		90x120x80	105x161x8	16		105x161x86	105x161x86			105x16	1x86		140y24	55x110		140v2	55x100	
Cadre de face avant		2-3 pôles fixe PAV		90x120x80	105x161x8			105x161x86	105x161x86			105x16			140x25				55x100 55x110	
Cadre de face avant Dimensions et masses		2-3 pôles fixe PAV 4 pôles fixes PAV 3 pôles fixe PAV		90x120x80	105x161x8 140x161x8 1.6			105x161x86 105x161x86 1.7	105x161x86 140x161x86 1.6			105x16 140x25			140x25 185x25			140x2 185x2 6.0		

Notice technique NT 4

DETERMINATION DES SECTIONS DE CABLES (CONDUCTEUR DE PHASE)

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Il ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- conducteur utilisé et de son mode de pose,
- déterminer un coefficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les trois facteurs de correction, K1, K

NT4

- pose,
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte,
- température ambiante et la nature de l'isolant.

Lettre de sélection

Type d'éléments conducteurs	Mode de pose	Lettre de sélection
Conducteurs et câbles multiconducteurs	 sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux plafond sous caniveau, moulures, plinthes, chambranles 	В
	 en apparent contre mur et plafond sur chemin de câbles ou tablettes non perforées 	C
Câble multiconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	E
Câbles monoconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	F

Facteur de correction K1

Lettre de sélection	Cas d'installation	K1
В	 câbles dans des produits encastrés directement dans matériaux thermiquement isolants 	0.70
	 conduits encastrés dans des matériaux thermiquement isolants 	0.77
	câbles multiconducteurs	0.90
	 vides de construction et caniveaux 	0.95
С	 pose sous plafond 	0.95
B, C, E, F	 autres cas 	1

Facteur de correction K2

Lettre de sélection	Disposition des câbles jointifs	Facteur de corrections K2 Nombre de circuits ou de câbles multiconducteurs													
		1	2	3	4	5	6	7	8	9	12	16	20		
В, С	Encastrés ou noyés dans les parois	1.00	0.8	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.45	0.41	0.38		
С	Simple couche sur les murs ou les planchers ou tablettes non perforées	1.00	0.85	0.79	0.75	0.73	0.72	0.72	0.72	0.71	0.70				
	Simple couche au plafond	0.95	0.81	0.72	0.68	0.66	0.64	0.63	0.63	0.62	0.61				
E, F	Simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1.00	0.88	0.82	0.77	0.75	0.73	0.73	0.73	0.72	0.72				
	Simple couche sur des échelles à câbles, corbeaux, etc.	1.00	0.87	0.82	0.80	0.80	0.79	0.79	0.78	0.78	0.78				

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

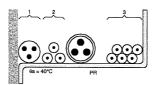
■ 0.80 pour deux couches Facteur de correction K3

■ 0.73 pour trois couches ■ 0.70 pour quatre ou cinq couches

Températures	Isolation		
ambiantes (°C)	Elastomère (caoutchouc)	Polychlorure de vinyle (PVC)	Polyéthylène (PR) Butyle, éthylène, propylène (EPR)
10	1.29	1.22	1.15
15	1.22	1.17	1.12
20	1.15	1.12	1.08
25	1.07	1.07	1.04
30	1.00	1.00	1.00
35	0.93	0.93	0.96
40	0.82	0.87	0.91
45	0.71	0.79	0.87
50	0.58	0.71	0.82
55	-	0.61	0.76
60	-	0.50	0.71

Notice technique NT 5

DETERMINATION DES SECTIONS DE CABLES (section minimale)


Connaissant I'_Z et K (I'_Z est le courant équivalent au courant véhiculé par la canalisation : $I'_Z = I_Z$ / K), le tableau ci-contre indique la section à retenir.

Exemple:

Un câble PR triphasé est tiré sur un chemin de câble perforé, jointivement avec 3 autres circuits constitués :

- d'un câble triphasé (1er circuit)
- de 3 câbles unipolaires (2^{éme} circuit)
- de 6 câbles unipolaires (3^{éme} circuit): ce circuit est constitué de 2 conducteur par phase.

Il y aura donc 5 groupements triphasés. La température ambiante est de 40 °C. Le câble PR véhicule un courant de 23 A par phase.

La lettre de sélection donnée par Le tableau correspondant est E.

Le facteur de correction K1, donné par le tableau correspondant, est 1.

Le facteur de correction K2, donné par le tableau correspondant, est 0.75.

Le facteur de correction K3, donné par le tableau correspondant, est 0.91.

Le coefficient K, qui est K1 x K2 x K3, est donc 1 x 0.75 x 0.91 soit 0.68

Détermination de la section :

Choisir la valeur normalisée de In juste supérieure à 23 A.

Le courant admissible dans la canalisation est I_Z = 25 A.

L'intensité fictive l'Z prenant en compte le coefficient K est l'Z = 25 / 0.68 = 36.8 A.

En se plaçant sur la ligne correspondant à la lettre de sélection E, dans la colonne PR3, on choisit la valeur immédiatement supérieure à 36.8 A, soit, ici, 42 A dans le cas du cuivre qui correspond à une section de 4 mm² cuivre ou, dans le cas de l'aluminium 43 A, qui correspond à une section de 6 mm² aluminium.

Valeurs normalisées de In

In (A) | 1 | 2 | 3 | 5 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 70 | 80 | 100 | 125 | 160 | 200 | 250 | 320 | 400 | 500

Tableau des sections à retenir

	Isolant e	t nombre	de conduc	teur char	gés (3 ou 2	2)				
	Caoutch	ouc ou PV	С		Butyle o	u PR ou ét	hylène PR			
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
Section	1.5	15.5	17.5	18.5	19.5	22	23	24	26	
cuivre	2.5	21	24	25	27	30	31	33	36	
	4	28	32	34	36	40	42	45	49	
(mm²)	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946 1088		1083
	630	40.5	40.5	40.5		855	1005			1254
Section	2.5	16.5	18.5	19.5		23	25	26	28	
aluminium	6	22 28	25 32	26 33		31 39	33 43	35 45	38 49	
(mm²)	10	39	44	46		54	59	62	67	
(<i>)</i>	16	53	59	61		73	79	84	91	
	25	70	73	78		90	98	101	108	121
	35	86	90	96		112	122	126	135	150
	50	104	110	117		136	149	154	164	184
	70	133	140	150		174	192	198	211	237
	95	161	170	183		211	235	241	257	289
	120	186	197	212		245	273	280	300	337
	150		227	245		283	316	324	346	389
	185		259	280		323	363	371	397	447
	240		305	330		382	430	439	470	530
	300		351	381		440	197	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

Examen national d'obtention du Brevet de Technicien Supérieur -

Filière: MAINTENANCE INDUSTRIELLE

Notice technique NT 6

DETERMINATION DE LA CHUTE DE TENSION

L'impédance d'un canalisation est faible mais non nulle : lorsqu'elle est traversée par le courant d'emploi, il y a chute de tension entre son origine et son extrémité.

Or le bon fonctionnement d'un récepteur (moteur, éclairage) est conditionné par la valeur de la tension à ses bornes. Il est donc nécessaire de limiter les chutes de tension en ligne par un dimensionnement correct des canalisations d'alimentation.

Cette section permet de déterminer les chutes de tension en ligne afin de vérifier qu'elles soient :

Session Mai 2014

Épreuve: Génie Electrique

- conforme aux normes et règlements en vigueur,
- acceptées par le récepteur,
- adaptées aux impératifs d'exploitation.

Limite maximale de la chute de tension

La norme NF C 15 -100 impose que la chute de tension entre l'origine de l'installation et tout point d'utilisation n'excède pas les valeurs du tableau ci-après.

Chute de tension maximale entre l'origine de l'installation BT et l'utilisation											
	éclairage	Autres usages (force motrice)									
Alimentation par le réseau BT de distribution publique	3 %	5 %									
Alimentation par poste privé HT / BT	6 %	8 %									

Calcul de la chute de tension en ligne en régime permanent

Le tableau ci-dessous donne la chute de tension en % dans 100 m de câble, en 400 V / 50 Hz triphasé, en fonction de la section du câble et du courant véhiculé (In du récepteur). Ces Ces valeurs sont données pour un Cos φ de 0.85 dans le cas d'un moteur et de 1 pour un récepteur non inductif. Ce tableau peut être utilisé pour des longueurs de câble L ≠ 100 m : il suffit d'appliquer au résultat le coefficient L /

$\cos \varphi = 0.85$																
câble	CUIVRE															
S (mm²)	1.5	2.5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
In (A)																
1	0.5	0.4														
2	1.1	0.6	0.4													
3	1.5	1	0.6	0.5												
5	2.6	1.6	1	0.8	0.4											
10	5.2	3.2	2	1.5	0.8	0.5										
16	8.4	5	3.2	2.4	1.3	0.8	0.5									
20		6.3	4	3.1	1.6	1	0.6									
25		7.9	5	3.9	2	1.3	0.8	0.6								
32			6.3	5	2.6	1.6	1.1	0.8	0.5							
40			7.9	6.1	3.2	2.1	1.4	1	0.7	0.5						
50				7.7	4.1	2.5	1.6	1.2	0.9	0.6	0.5					
63				9.7	5	3.2	2.1	1.5	1.1	0.8	0.6					
70					5.6	3.5	2.3	1.7	1.3	0.9	0.7	0.5				
80					6.4	4.1	2.6	1.9	1.4	1	0.8	0.6	0.5			
100						5	3.3	2.4	1.7	1.3	1	0.8	0.7	0.65		
125						4.4	4.1	3.1	2.2	1.6	1.3	1	0.9	0.21	0.76	
160							5.3	3.9	2.8	2.1	1.6	1.4	1.1	1	0.97	0.77
200				_			6.4	4.9	3.5	2.6	2	1.6	1.4	1.8	1.22	0.96
250								6	4.3	3.2	2.5	2.1	1.7	1.6	1.53	1.2
320									5.6	4.1	3.2	2.6	2.3	2.1	1.95	1.54
400									6.9	5.1	4	3.3	2.8	2.6	2.44	1.92
500										6.5	5	4.1	3.5	3.1	3	2.4

Cos φ = 1																
câble	CUIVRE															
S (mm²)	1.5	2.5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
In (A)			•	•				•	•				•	•	•	
1	0.6	0.4														
2	1.3	0.7	0.5													
3	1.9	1.1	0.7	0.5												
5	3.1	1.9	1.2	0.8	0.5											
10	6.1	3.7	2.3	1.5	0.9	0.5										
16	10.7	5.9	3.7	2.4	1.4	0.9	0.6									
20		7.4	4.6	3.1	1.9	1.2	0.7									
25		9.3	5.8	3.9	2.3	1.4	0.9	0.6								
32			7.4	5	3	1.9	1.2	0.8	0.6							
40			9.3	6.1	3.7	2.3	1.4	1.1	0.7	0.5						
50				7.7	4.6	2.9	1.9	1.4	0.9	0.6	0.5					
63				9.7	5.9	3.6	2.3	1.6	1.2	0.8	0.6					
70					6.5	4.1	2.6	1.9	1.3	0.9	0.7	0.5				İ
80					7.4	4.6	3	2.1	1.4	1.1	0.8	0.6	0.5			
100					9.3	5.8	3.7	2.6	1.9	1.4	1	0.8	0.7	0.6		
125						7.2	4.6	3.3	2.3	1.6	1.2	1	0.9	0.7	0.6	
160							5.9	4.2	3	2.1	1.5	1.3	1.2	1	0.8	0.6
200							7.4	5.3	3.7	2.6	2	1.5	1.4	1.3	1	0.8
250								6.7	4.6	3.3	2.4	1.9	1.7	1.4	1.2	0.9
320									5.9	4.2	3.2	2.4	2.3	1.9	1.5	1.2
400									7.4	5.3	3.9	3.1	2.8	2.3	1.9	1.4
500										6.7	4.9	3.9	3.5	3	2.5	1.9

Examen national d'obtention du Brevet de Technicien Supérieur -

Filière: MAINTENANCE INDUSTRIELLE

Notice technique NT 7

DETERMINATION DU COURANT DE COURT-CIRCUIT:

éléments considérés	résistance R	réactance X
réseau amont tableau H1-33	Ra ≈ 0,15 Xa R peut donc être négligé par rapport à X	$Xa = Za = \frac{U_{20}^{\circ}}{Pcc}$
transformateur tableau H1-34	RTR = Pcu 3ln² RTR = peut souvent être négligée devant XTR pour transformateur de puissance >100 kVA	$\sqrt{ZTR^2 - RTR^2}$ $avec ZTR = \frac{U^2 20}{P} \times Ucc$
disjoncteur	négligeable	XD = 0,15 mΩ
jeu de barresos 053 081 081 375 275 282 382 382 382 382 375 375 382 382 375 382 375 382 382 375 382 382 382 382 382 382 382 382 382 382	négligeable pour S > 200 mm² en dessous : $R = \frac{\rho L (1)}{S}$	XB = 0,15 mΩ/m
canalisations (2) 000 001 001 001 000 001 001 000 001 001 000	R PLO	câbles : Xc = 0,08 mΩ/m
moteurs 002 305 CM	voir § "moteurs" (souvent négligeable en BT)	085
courant de court-circuit triphasé 083 085 085 085 085		67 11

tableau H1-38 : récapitulation des impédances des différents éléments d'un réseau BT

U20: tension entre phases à vide au secondaire du transformateur HT/BT (en volts).

Pcc : puissance de court-circuit du réseau. amont en VA (donnée par le distributeur d'énergie).

Pcu : pertes cuivre du transformateur en VA Ucc : tension de court-circuit en %.

(1) ρ = résistivité à la température normale

Session Mai 2014

Épreuve: Génie Electrique

- $p = 22.5 \text{ m}\Omega.\text{mm}^2/\text{m}$ pour le cuivre $p = 22.5 \text{ m}\Omega.\text{mm}^2/\text{m}$ pour le cuivre $p = 36 \text{ m}\Omega.\text{mm}^2/\text{m}$ pour l'aluminium. (2) S'il y a plusieurs conducteurs en parallèle par phase, diviser la résistance d'un conducteur par le nombre de conducteurs. La réactance n'est pratiquement pas modifiée.

										en kV											
		16	25	40	50	63	80	100	160	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
	7 V																				
In ((A)	39	61	97	122	153	195	244	390	609	767	974	1218	1535	1949	2436	3045	3899	4872	6090	7673
	(A) 	973 N////////////////////////////////////	1521	2431	3038	3825 	4853	6060	9667	15038	18887	23883	29708	37197	41821	42738	48721	57151	65840	76127	94337
In ((A)	23	35	56	70	89	113	141	225	352	444	563	704	887	1127	1408	1760	2253	2816	3520	4435
lcc	(A)	563	879	1405	1756	2210	2805	3503	5588	8692	10917	13806	17173	21501	24175	27080	30612	35650	40817	46949	58136

Tableau H1-31 : Icc triphasé aux bornes du transformateur HT/BT alimenté par un réseau 500 MVA

Pcc	U0 (V)	Ra (m Ω)	Xa (m Ω)
250 MVA	237	0.033	0.222
	410	0.1	0.700
	237	0.017	
500 MVA	410	0.050	0.350

Tableau H1-33: impédance du réseau amont ramenée au secondaire du transformateur HT/BT.

Tension	U ₂₀ = 237 V				U ₂₀ = 410 V			
Puissance (kVA)	U _{cc} (%)	R_{TR} ($m\Omega$)	X_{TR} ($m\Omega$)	Z_{TR} ($m\Omega$)	U _{cc} (%)	R_{TR} ($m\Omega$)	X_{TR} ($m\Omega$)	Z_{TR} ($m\Omega$)
100	4	11.79	19.13	22.47	4	35.30	57.23	67.24
160	4	5.15	13.06	14.04	4	15.63	39.02	42.03
250	4	2.92	8.50	8.99	4	8.93	25.37	26.90
315	4	2.21	6.78	7.13	4	6.81	20.22	21.34
400	4	1.614	5.38	5.62	4	5.03	16.04	16.81
500	4	1.235	4.32	4.49	4	3.90	12.87	13.45
630	4	0.92	3.45	3.57	4	2.95	10.25	10.67
800	4.5	0.895	3.03	3.16	4.5	2.88	9	9.45
1000	5.5	0.68	3.01	3.09	5	2.24	8.10	8.405
1200					5.5	1.813	7.16	7.39
1600					6	1.389	6.14	6.30
2000					6.5	1.124	5.34	5.46

Tableau H1-34: impédance, résistance et réactance d'un transformateur.

Épreuve: Génie Electrique

Examen national d'obtention du Brevet de Technicien Supérieur -

Filière: MAINTENANCE INDUSTRIELLE

Notice technique NT 8

Indice de Protection IP

	Indice de Protection IP 1 er chiffre: 2 e chiffre: 3 e chiffre:													
IP	Test	Definition	IP IP	ction contre les liqui Test	Definition	IP	ection mécanique Test	Definition						
0xx	1631	Pas de	x0x	1631	Pas de	xx0	1631	Pas de						
UXX		protection			protection	XXU		protection						
1xx	Ø 50 mm	Protégé contre les corps solides supérieurs à 50 mm (exemple : contacts involontaires de la main)	x1x		Protégé contre les chutes verticales de gouttes d'eau (condensation)	xx1	150 g 10 cm	Energie de choc : 0.15 J						
2xx	Ø 12 mm	Protégé contre les corps solides supérieurs à 12 mm (exemple : doigt de la main)	x2x	15°4	Protégé contre les chutes de gouttes d'eau jusqu'à 15° de la verticale	xx2	200 g	Energie de choc : 0.20 J						
3xx	Ø 2.5 mm	Protégé contre les corps solides supérieurs à 2.5 mm (exemples : outils, fils)	x3x	88	Protégé contre l'eau en pluie jusqu'à 6 _0° de la verticale	xx3	250 g 15 cm	Energie de choc : 0.37 J						
4xx	Ø 1 mm	Protégé contre les corps solides supérieurs à 1 mm (exemples : outils fin, petits fils)	x4x		Protégé contre les projections d'eau de toutes directions	xx4	250 g	Energie de choc : 0.50 J						
5xx	0	Protégé contre les poussières (pas de dépôt nuisible)	x5x		Protégé contre les jets d'eau de toutes directions à la lance	xx5	350 g	Energie de choc : 0.70 J						
6xx	0	Totalement protégé contre les poussières.	x6x	**	Protégé contre les projections d'eau assimilables aux paquets de mer	xx6	250 g	Energie de choc : 1 J						
IP =	mple: IP 555 indice de prot facteur pour o solides, liquio	corps	x7x	0.15 m	Protégé contre les effets de l'immersion entre 0.15 et 1 m	xx7	0.5 kg	Energie de choc : 2 J						
	mécaniques		x8x	m	Protégé contre les effets prolongés de l'immersion sous pression	xx8	1.25 kg 40 cm	Energie de choc : 5 J						

Examen national d'obtention du Brevet de Technicien Supérieur -

Session Mai 2014 Filière: MAINTENANCE INDUSTRIELLE Épreuve: Génie Electrique

Notice technique NT 9 Moteur Asynchrone

Moteurs triphasés fermés asynchrones LS

I P 55 - 50 Hz -Classe F - AT 80 K - 400V Δ S1

Туре	Puissance	Vitesse	Couple nominal	Intensité	Facteur de	Rendement	Courant démarrage	Masse
	nominale à50Hz	nominale	C _N N.m	nominale	puissance	η	/ Courant nominal	IM B3
	P _N Kw	N _N min ⁻¹		I _N (400V) A	Cos φ	%	I_D/I_N	Kg
LS 100 L	3	2860	10	6.3	0.83	81	7.6	20
LS 100 L	03.7	2870	12	7.8	0.84	81	8.6	22
LS 112 M	4	2840	13.5	8.2	0.86	81	8.4	22
LS 112 MG	5.5	2900	18.1	11.5	0.83	83	8.4	30
LS 132 S	5.5	2900	18.1	11.5	0.83	83	8.4	32.5
LS 132 S	7.5	2920	24.5	15.3	0.84	85	8.6	39
LS 132 M	9	2945	29.6	17	0.87	87	7.6	49
LS 132 M	11	2915	36	21.2	0.86	87	7.6	54
LS 160 M	11	2935	35.8	20.4	0.87	89.5	8.5	62
LS 160 MP	15	2935	48.8	27.6	0.87	90	8.5	72
LS 160 L	18.5	2945	60	33.2	0.88	91.4	8.4	92
LS 180 MT	22	2945	71.4	39.5	0.88	91.4	8.6	98
LS 200 LT	30	2950	97.2	51.7	0.91	92.0	8.8	160
LS 200 L	37	2960	119.4	64.9	0.89	92.5	8.4	185
LS 225 MR	45	2955	145.5	77	0.91	93.2	8.5	210
LS 250 MZ	55	2960	177.5	96	0.89	93.4	8.7	230
LS 280 SP	75	2975	240.9	125	0.92	94.3	8.3	430
LS 280 MP	90	2975	289	149	0.92	94.9	8.6	505
LS 315 SP	110	2975	353.3	184	0.91	94.9	8.7	650
LS 315 MP	132	2975	423.9	220	0.91	95.2	8.8	730
LS 315 MR	160	2975	513.8	267	0.91	95.2	8.9	830

Moteurs triphasés fermés asynchrones LS

I P 55 - 50 Hz -Classe F - AT 80 K - 400V Δ S1

11 00 00 112 010000 1 A1 00 IV 400 A 01												
Type	Puissance	Vitesse	Couple nominal			Rendement	Courant démarrage	Masse				
	nominale à50Hz	nominale	C_N N.m	nominale	puissance	η	/ Courant nominal	IM B3				
	P _N Kw	N _N min ⁻¹		I _N (400V) A	Cos φ	%	I_D/I_N	Kg				
LS 100 L	2.2	1430	14.7	5.1	0.81	76	5.3	18				
LS 100 L	3	1425	20.1	7.2	0.78	77	5.2	20.8				
LS 112 M	4	1425	26.8	9.1	0.79	80	5.7	24.4				
LS 132 S	5.5	1430	36.7	11.9	0.82	82	6.4	38.7				
LS 132 M	7.5	1450	49.4	15.2	0.84	85	7.7	54.7				
LS 132 M	9	1450	59.3	17.8	0.85	86	7.1	59.9				
LS 160 MP	11	1455	72.2	21.1	0.85	88.5	7.7	70				
LS 160 LR	15	1450	98.8	29.1	0.84	88.8	7.5	78				
LS 180 MT	18.5	1450	121.9	35.4	0.84	89.7	7.4	100				
LS 180 LR	22	1450	145	42.1	0.84	89.7	7.4	110				
LS 200 LT	30	1460	196.3	55.0	0.87	90.5	6.6	170				
LS 225 ST	37	1470	240.5	67.9	0.85	92.5	6.5	205				
LS 225 MR	45	1470	292.5	81	0.86	92.8	6.5	235				
LS 250 MP	55	1480	355	99	0.85	94.1	6.7	340				
LS 280 SP	75	1480	484.2	134	0.85	94.8	6.9	445				
LS 280 MP	90	1485	579	161	0.85	95.0	7.6	490				
LS 315 SP	110	1488	706.3	193	0.86	95.5	7.8	720				
LS 315 MR	132	1488	847.5	234	0.85	95.6	8.1	785				
LS 315 MR	160	1488	1027.3	276	0.87	96.1	8.4	855				

Épreuve: Génie Electrique

Examen national d'obtention du Brevet de Technicien Supérieur -

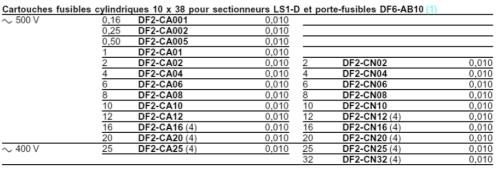
Filière : MAINTENANCE INDUSTRIELLE

Notice technique NT 10

Cartouches fusibles

Type aM : protection dos appareils à fortes pointes d'intensité (moteur, électro-frein, etc.)

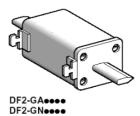
Type gl/gG : protection des circuits sans pointe de courant Importante (chauffage, etc.).


Références

Cartouches	fusibles	sans	nercuteur
Cartouchics	lusibles	oai io	percuteur

Type al	M		Type gl	/gG	
Calibre	Référence	Masse	Calibre	Référence	Masse
en A	unitaire	kg	en A	unitaire	kg
cylindriq	ues 8,5 x 31,5 pou	r porte-fusibles D	F6-AB08	(1)	
1	DF2-BA0100	0,010	1	DF2-BN0100	0,010
2	DF2-BA0200	0,010	2	DF2-BN0200	0,010
4	DF2-BA0400	0,010	4	DF2-BN0400	0,010
6	DF2-BA0600	0,010	6	DF2-BN0600	0,010
8	DF2-BA0800	0,010	8	DF2-BN0800	0,010
10	DF2-BA1000	0,010	10	DF2-BN1000	0,010
			12	DF2-BN1200 (4)	0,010
			16	DF2-BN1600 (4)	0,010
			20	DF2-BN2000 (4)	0,010
	Calibre en A cylindriq 1 2 4 6 8	Calibre en A Référence unitaire cylindriques 8,5 x 31,5 pou 1 DF2-BA0100 2 DF2-BA0200 4 DF2-BA0400 6 DF2-BA0600 8 DF2-BA0800	Calibre en A Référence unitaire Masse kg Explindriques 8,5 x 31,5 pour porte-fusibles D 0,010 1 DF2-BA0100 0,010 2 DF2-BA0200 0,010 4 DF2-BA0400 0,010 6 DF2-BA0600 0,010 8 DF2-BA0800 0,010	Calibre en A Référence unitaire Masse kg Calibre en A 2ylindriques 8,5 x 31,5 pour porte-fusibles DF6-AB08 (1) 1 DF2-BA0100 0,010 1 2 DF2-BA0200 0,010 2 2 4 DF2-BA0400 0,010 4 6 DF2-BA0600 0,010 6 8 DF2-BA0800 0,010 8 10 DF2-BA1000 0,010 10 12 16 16	Part

DF2-EA


DF2-CA DF2-CN DF

Cartouches fusibles	cylindri	gues 14 x 51 pour se	ctionneurs et po	rte-fusi	bles GK1-E (1)	
∼ 660 V	0,25	DF2-EA002	0,020			
	0,50	DF2-EA005	0,020			
	1	DF2-EA01	0,020			
	2	DF2-EA02	0,020			
	4	DF2-EA04	0,020	4	DF2-EN04	0,020
	6	DF2-EA06	0,020	6	DF2-EN06	0,020
	8	DF2-EA08	0,020			
	10	DF2-EA10	0,020	10	DF2-EN10	0,020
	12	DF2-EA12	0,020			
	16	DF2-EA16	0,020	16	DF2-EN16	0,020
	20	DF2-EA20	0,020	20	DF2-EN20	0,020
	25	DF2-EA25	0,020	25	DF2-EN25	0,020
∼ 500 V	32	DF2-EA32 (4)	0,020	32	DF2-EN32 (4)	0,020
	40	DF2-EA40 (4)	0,020	40	DF2-EN40 (4)	0,020
\sim 400 V	50	DF2-EA50 (4)	0,020			

Cartouches fusible	s cylindriq	ues 22 x 58 pou	ır sectionneurs DK1-F	B, GB (1	et porte-fusibles GK1-F	
∼ 660 V	4	DF2-FA04	0,045			
	6	DF2-FA06	0,045			
	8	DF2-FA08	0,045			
	10	DF2-FA10	0,045	10	DF2-FN10	0,045
	16	DF2-FA16	0,045			
	20	DF2-FA20	0,045	20	DF2-FN20	0,045
	25	DF2-FA25	0,045	25	DF2-FN25	0,045
	32	DF2-FA32	0,045	32	DF2-FN32	0,045
	40	DF2-FA40	0,045	40	DF2-FN40	0,045
	50	DF2-FA50	0,045	50	DF2-FN50	0,045
	63	DF2-FA63 (4)	0,045	63	DF2-FN63 (4)	0,045
	80	DF2-FA80 (4)	0,045	80 (3)	DF2-FN80 (4)	0,045
√ 500 V	100 (3)	DF2-FA100 (4)	0,045	100 (3)	DF2-FN100 (4)	0,045
√ 400 V	125 (3)	DF2-FA125 (4)	0,045			

\sim 500 V	50	DF2-GA1051 (4)	0,230	50	DF2-GN1051	0,230
	63	DF2-GA1061 (4)	0,230	63	DF2-GN1061	0,230
	80	DF2-GA1081 (4)	0,230	80	DF2-GN1081	0,230
	100	DF2-GA1101 (4)	0,230	100	DF2-GN1101	0,230
	125	DF2-GA1121 (4)	0,230	125	DF2-GN1121	0,230
	160	DF2-GA1161 (4)	0,230	160	DF2-GN1161	0,230
	200	DF2-GA1201 (4)	0,230			

Épreuve: Génie Electrique

Examen national d'obtention du Brevet de Technicien Supérieur -

Filière : MAINTENANCE INDUSTRIELLE

Notice technique NT 11 Sectionneurs

Se	ctionneur			
Calibre	Taille des cartouches fusibles	Nombre de contacts de pré coupure	Dispositif contre la marche en monophasé	Référence
25A	10 x 38	1	Sans	LS1-D2531A65 (3)
20/4	10 X 30	2	Sans	LS1-D253A65 (3)
			Sans	GK1-EK (4)
50 A	14 x 51	1	Avec	GK1-EV (4)
50 A			Sans	GK1-ES (4)
		2	Avec	GK1-EW (4)
			Sans	DK1-FB23
80A	22 x 58	1	Avec	OK1-FB28
OUA	22 X 30		Sans	DK1-FB13
		2	Avec	DK 1-F B 18
			Sans	DK1-GB23
125 A	22 x 58	1	Avec	DK1-GB28
123 A	22 \ 30		Sans	OK1-GB13
		2	Avec	DK1-G B18

Catégories d'emploi « Contacteur »

	Catégorie	Récepteur	Fonctionnement
Alternatif	AC1 AC2 AC3 AC4	Four à résistance Moteur à bagues Moteur à cage Moteur à cage	Charges non inductives Démarrage, inversion de marche Démarrage, coupure du moteur lancé Démarrage, inversion, marche, marche à-coups
Continu	DC1 DC2 DC3 DC4 DC5	Résistance Moteur shunt Moteur série	Charges inductives Démarrage, coupure Démarrage, inversion, marche, à-coups Démarrage, coupure Démarrage, inversion, marche, à-coups

Solution : Fusible, Contacteur												
Puis	sances	normali	sées de	s mote	urs tripl	nasés	Euci	bloc	Contacteur	Relais de protection		
50/6	50/60Hz en catégorie AC3 (Kw)					Fusibles Contacteur — Type (A) Référence		Référence	Zône de Réglage (A)			
220V	380V	415V	440V	500V	660V	1000V	аМ	gl				
*	*	*	*	*	*	-	1	2	LC1-D093•A56	LR1-D093003A65	0,25 - 0.4	
*	*	*	*	*	0,37	-	1	2	LC1-D093•A56	LR1-D093004A65	0,4 - 0,63	
*	*	*	*	*	0,55	-	2	4	LC1-D093•A56	LR1-D093005A65	0,63 –1	
*	0,37	*	0,55	0,55	1,1	-	2	4	LC1-D093•A56	LR1-D093006A65	1 - 1,6	
0,37	0,75	1,1	1,1	1,1	1,5	-	4	6	LC1-D093•A56	LR1-D093007A65	1,6 – 2,5	
0,75	1,5	1,5	1,5	1,5	3	-	6	10	LC1-D093•A56	LR1-D093008A65	2,5 – 4	
1,1	2,2	2,2	2,2	3	4	-	8	16	LC1-D093•A56	LR1-D093010A65	4 – 6	
1,5	3	3,7	3 7	-	5,5	-	12	20	LC1-D093•A56	LR1-D093012A65	5,5 – 8	
2,2	4	4	4	5,5	-	-	12	20	LC1-D093•A56	LR1-D093014A65	7 – 10	
-	-	-	-	-	7,5	-	12	20	LC1-D123•A56	LR1-D093014A65	7 – 10	
3	5,5	5,5	5,5	7,5	-	-	16	25	LC1-D123•A56	LR1-D093016A65	10 – 13	
4	7,5	9	9	10	-	-	20	32	LC1-D173•A65	LR1-D093021A65	13 – 18	
-	-	-	-	15	15	-	20	32	LC1-D253•A65	LR1-D093021A65	13 – 18	
5,5	11	11	11	-	-	-	25	50	LC1-D253•A65	LR1-D093022A65	8 – 25	
-	-	-	-	18,5	18,5	-	25	50	LC1-D323•A65	LR1-D093022A65	18 – 25	
7,5	15	15	15		-	-	40	63	LC1-D323•A65	LR1-D093053A65	23 – 32	
-	-	-	-	-	22	-	40	63	LC1-D403∙	LR1-D093053A65	23 – 32	
10	18,5	22	22	22	30	-	40	80	LC1-D403•	LR1-D093055A65	30 – 40	
11	-	-	-	-	-	-	63	100	LC1-D403•	LR1-D093057A65	38 – 50	
-	-	25	25	25	33	-	63	100	LC1-D503•	LR1-D093057A65	38 – 50	
	-	-	-	-	37	-	63	100	LC1-D633•	LR1-D093057A65	38 – 50	
15	22	-	30	30	-	-	63	100	LC1-D503•	LR1-D093059A65	48 – 57	
-	25	30	-	33	-	-	63	100	LC1-D633•	LR1-D093059A65	48 – 57	
_	-	-	-	-	45	-	63	100	LC1-D803•	LR1-D093059A65	48 – 57	
18,5	30	37	37	37	55	-	80	125	LC1-D633•	LR1-D093061A65	57 – 66	
22	37	45	45	55	63	-	80	125	LC1-D803•	LR1-D093063A65	63 – 80	

Épreuve: Génie Electrique

Examen national d'obtention du Brevet de Technicien Supérieur -

Filière : MAINTENANCE INDUSTRIELLE

Notice technique NT 12

Solu	Solution : Contacteur, Disjoncteur moteur										
Puissances normalisées des moteurs triphasé 50/60 Hz en catégorie AC3						Disjocteur-Mo	teur Réglage des	Contacteur Référence	(380/4	Pouvoir de coupure (380/415 v) en kA	
220v 240v	380v		440v	500v	660v	Référence déclencheurs thermiques A			CITT	Avec limiteur GV1-L.3	
*	*	*	*	*	*	GV1-M01	0,10 à 0,16	LC1-D093•A65	100	-	
*	*	*	*	*	*	GV1-M02	0,16 à 0,25	LC1-D093•A65	100	-	
*	*	*	*	*	*	GV1-M03	0,25 à 0,40	LC1-D093•A65	100	-	
*	*	*	*	*	0,37	GV1-M04	0,40 à 0,63	LC1-D093•A65	100	-	
*	*	*	0,37	0,37	0,55	GV1-M05	0,63 à 1	LC1-D093•A65	100	-	
-	0,37	-	0,55	0,75	1,1	GV1-M06	1 à 1,6	LC1-D093•A65	100	-	
0,37	0,75	1,1	1,1	1,1	1,5	GV1-M07	1,6 à 2,5	LC1-D093•A65	100	-	
0,75	1,5	1,5	1,5	2,2	3	GV1-M08	2,5 à 4	LC1-D093•A65	100	-	
1,1	2,2	2,2	3	3,7	4	GV1-M10	4 à 6	LC1-D093•A65	100	-	
2,2	4	4	4	5,5	5,5	GV1-M14	6 à 10	LC1-D093•A65	6	100	
-	-	-	-	-	7,5	GV1-M14	6 à 10	LC1-D123•A65	6	100	
3	5 ₁ 5	5,5	5,5	7 ₁ 5	-	GV1-M20	10 à 16	LC1-D123•A65	6	100	
4	7,5	7,5	7,5	10	-	GV1-M20	10 à 16	LC1-D173•A65	6	100	
-	-	-	-	-	11	GV1-M20	10 à 16	LC1-D253•A65	6	100	
-	-	9	9	-	-	GV1-M21	16 à 20	LC1-D173•A65	5	100	
5,5	10	-	•	11	15	GV1-M21	16 à 20	LC1-D253•A65	5	100	
5,5	11	11	11	15	-	GV1-M22	20 à 25	LC1-D253•A65	5	100	
-	-	•	•	•	18,5	GV1-M22	20 à 25	LC1-D323•A65	5	100	
7,5	15	15	15	18,5	-	GV3-M40	25 à 40	LC1-D323•A65	35	-	
11	18,5	22	22	22	30	GV3-M40	25 à 40	LC1-D403•	35	-	
-	•	•	•	25	33	GV3-M40	25 à 40	LC1-D503•	35	-	
15	22	25	30	30	-	GV3-M63	40 à 63	LC1-D503•	35	-	
-	30	-	•	37	37	GV3-M63	40 à 63	LC1-D633•	35	-	
-	•	-	•	40	45	GV3-M63	40 à 63	LC1-D803•	35	-	
18,5	•	37	37	-	-	GV3-M80	63 à 80	LC1-D633•	35	-	
22	37	45	45	55	-	GV3-M80	63 à 80	LC1-D803•	35	-	

Démarreurs

ralentisseur progressifs Altivar 46

Application en service standard et sévère

Puissance indiquée sur la plaque moteur en kW

moteur				démarreur			
puissar	ice motei	ur		courant	calibre	référence	
230 V	400 V	440 V	500 V	préréglage usine	(lcL)	service	
kW	kW	kW	kW	A	Α	standard	sévère
3	5,5	5,5	7,5	11	12		ATS 46D17N
4	7,5	7,5	9	15,2	17	ATS 46D17N	ATS 46D22N
5,5	11	11	11	21	22	ATS 46D22N	ATS 46D32N
7,5	15	15	18,5	28	32	ATS 46D32N	ATS 46D38N
9	18,5	18,5	22	34	38	ATS 46D38N	ATS 46D47N
11	22	22	30	42	47	ATS 46D47N	ATS 46D62N
15	30	30	37	54	62	ATS 46D62N	ATS 46D75N
18,5	37	37	45	68	75	ATS 46D75N	ATS 46D88N
22	45	45	55	80	88	ATS 46D88N	ATS 46C11N
30	55	55	75	98	110	ATS 46C11N	ATS 46C14N
37	75	75	90	128	140	ATS 46C14N	ATS 46C17N
45	90	90	110	160	170	ATS 46C17N	ATS 46C21N
55	110	110	132	190	210	ATS 46C21N	ATS 46C25N
75	132	132	160	236	250	ATS 46C25N	ATS 46C32N
90	160	160	220	290	320	ATS 46C32N	ATS 46C41N
110	220	220	250	367	410	ATS 46C41N	ATS 46C48N
132	250	250	315	430	480	ATS 46C48N	ATS 46C59N
160	315	355	400	547	590	ATS 46C59N	ATS 46C66N
	355	400		610	660	ATS 46C66N	ATS 46C79N
220	400	500	500	725	790	ATS 46C79N	ATS 46M10N
250	500	630	630	880	1000	ATS 46M10N	ATS 46M12N
355	630	710	800	1130	1200	ATS 46M12N	

Épreuve: Génie Electrique

Notice technique NT 13

Types LC1-D et LP1-D pour commande en catégorie d'emploi AC-1 Tri et tétrapolaires

Circuit de commande en courant alternatif

Charges non inductives	Nombi	re de	Contacts		Référence de base à compléter par		Masse
courant maximal	pôles		auxilia		le repère de la tens	ion (2)	
(θ≤ 55 °C)			instanta	anés	Fixation.		
catégorie d'emploi AC-1	\d	├	$ \cdot \rangle$	4	raccordement (1)		
A						Tensions usuelles	kg
25	3	-	-	-	LC1-D0900••	B7 E7 F7 M7 07	0,320
					LC1-D1200•• (3)	B7 E7 F7 M7 Q7	0,320
			1	-	LC1-D0910••	B7 E7 F7 M7 07	0,320
					LC1-D1210•• (3)	B7 E7 F7 M7 Q7	0,320
			-	1	LC1-D0901••	B7 E7 F7 M7 Q7	0,320
	4				LC1-D1201• (3)	B7 E7 F7 M7 07	0,320
	4	-	-	-	LC1-D12004••	B7 E7 F7 M7 07	0,320
	2	2	-	-	LC1-D12008••	B7 E7 F7 M7 07	0,320
32	3	-	_	-	LC1-D1800••	B7 E7 F7 M7 Q7	0,320
			1	-	LC1-D1810••	B7 E7 F7 M7 07	0,350
			-	1	LC1-D1801••	B7 E7 F7 M7 07	0,350
40	3	-	-	-	LC1-D2500••	B7 E7 F7 M7 07	0,320
			1	-	LC1-D2510••	B7 E7 F7 M7 07	0,505
			-	1	LC1-D2501••	B7 E7 F7 M7 07	0,505
	4	-	-	-	LC1-D25004••	B7 E7 F7 M7 07	0,505
	2	2	-	-	LC1-D25008••	B7 E7 F7 M7 07	0,505
50	3	-	-	-	LC1-D3200••	B7 E7 F7 M7 07	0,320
			1	-	LC1-D3210••	B7 E7 F7 M7 Q7	0,525
			-	1	LC1-D3201••	B7 E7 F7 M7 Q7	0,525
60	3	-	1	1	LC1-D4011••	B5 E5 F5 M5 05	1,150
	4	-	-	-	LC1-D40004••	B5 E5 F5 M5 Q5	1,150
	2	2	-	-	LC1-D40008••	B5 E5 F5 M5 05	1,150
80	3	-	1	1	LC1-D5011••	B5 E5 F5 M5 05	1,150
					LC1-D6511•• (4)	B5 E5 F5 M5 05	1,150
	4	-	-	-	LC1-D65004••	B5 E5 F5 M5 05	1,150
	2	2	-	-	LC1-D65008••	B5 E5 F5 M5 05	1,150
125	3	-	1	1	LC1-D8011••	B5 E5 F5 M5 05	1,500
					LC1-D9511•• (5)	B5 ES F5 M5 05	1,500
	4	-	-	-	LC1-D80004••	B5 E5 F5 M5 05	1,530
	2	2	-	-	LC1-D80008••	B5 E5 F5 M5 05	1,530

Nota : blocs de contacts auxiliaires et modules :

(1) Pour LC1-D12 à D25: par encliquetage sur profilé de 35 mm AM1-DP.

Pour LC1-D40 à D80: par encliquetage sur profilé de 35 mm ou 75 mm AM1 -DL.

Bornes puissance : LP1-D12 à D80 protégées contre le toucher et vis maintenues desserrées.

(2) Tensions du circuit de commande existantes (délai variable. consulter notre agence régionale)

Volts	24	42	48	110	220/230	230	240	380/400	400	415	440	500	660
50 Hz	B5	D5	E5	F5	M5	P5	U5	Q5	V5	N5	R5	S5	Y5
60 Hz	B6	D6	E6	F6	M6	-	U6	Q6	-	-	R6	-	-
50 / 60 Hz	B7	D7	E7	F7	M7	P7	U7	Q7	V7	N7	R7		-

Autres tensions entre 24 et 660 V, consulter notre agence régionale.

- (3) Choix en fonction du nombre de cycles de manoeuvres en catégorie AC-1, pour un courant d'emploi de 25A: LC1-D09 = 7 x 105 cycles de manoeuvres et LC1-D12 = 1,5 x 106 cycles de manoeuvres.
- (4) Choix en fonction du nombre de cycles de manoeuvres en catégorie AC-1, pour un courant d'emploi de 80A : LC1-D50 = 1,5 x 108 cycles de manoeuvres et LC1-D65 = 2 x 108 cycles de manoeuvres.
- (5) Choix en fonction du nombre de cycles de manoeuvres en catégorie AC-1, pour un courant d'emploi de 125A: LC1-D80 = 1,3 x 108 cycles de manoeuvres et LC1-D65 = 1,6 x 108 cycles de manœuvres.